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Abstract

A previously developed perturbation method is generalized for computing the simplest normal form (at
each level of computation, the minimum number of terms are retained) of general n-dimensional differential
equations. This “direct” approach, combining the normal form theory with center manifold theory in one
unified procedure, can be used to systematically compute the simplest (or unique) normal form. Two
particular singularities of the Jacobian of the system are considered in this paper: the first one is associated
with one pair of purely imaginary eigenvalues (Hopf-type singularity), and the other corresponds to a
simple zero and a pair of purely imaginary eigenvalues (Hopf-zero-type singularity). The approach can be
easily formulated and implemented using a computer algebra system. Maple programs have been developed
in this paper which can be “automatically” executed by a user without the knowledge of computer algebra.
A physical oscillator model is studied in detail to show the computational efficiency of the “direct” method,
and the advantage of using the simplest normal form, which greatly simplifies the analysis on dynamical
systems, in particular, for bifurcations and stability.
© 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Normal form theory has been widely used in the analyses of vibrations and bifurcations for
non-linear dynamic systems [1-5]. The basic idea of the method of normal forms is applying a
series of near-identity non-linear transformations (NTs) to systematically construct a simple form
of the original system. In general, the normal form is not uniquely defined and computing the
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explicit formula of a normal form in terms of the coefficients of the original system is not easy. In
the past few years, symbolic computation of normal forms using computer algebra systems has
received considerable attention (e.g., see Refs. [6—12]). The method of normal form is usually
employed together with center manifold theory [13] which uses the same idea of successive NTs. In
general, given a non-linear system, center manifold theory is applied before using normal form
theory. However, there exist approaches which combine the two steps into one unified procedure
(e.g., see Refs. [7,9,11,12]).

This paper generalizes a previously developed perturbation technique to compute the simplest
normal form (SNF) of dynamical systems. This technique, based on the methods of multiple time
scales (MTSs) [14] and harmonic balance [15], has been widely used to study non-linear vibration
and bifurcation problems. Huseyin and Lin applied this approach to obtain the explicit formulae
of governing equations up to first order approximation [16]. Later, this method was extended to
compute the normal forms of Hopf and generalized Hopf bifurcations up to any high order for
general n-dimensional systems [7]. Moreover, user-friendly symbolic programs written in Maple
were developed, which can be ‘“‘automatically” executed on computer systems. This technique
combines center manifold theory and normal form theory in one unified procedure through a
perturbation procedure. Two singularities will be considered in this paper: one is characterized by
a pair of purely imaginary eigenvalues (Hopf-type singularity), and the other by a simple zero and
a pair of purely imaginary eigenvalues (Hopf-zero-type singularity). It will be shown that the
perturbation technique systematically leads to a ‘“‘unique” normal form for a given set of
differential equations up to an arbitrary order. The procedure is straightforward and does not
require solving large matrix systems. With the aid of Maple, this approach can be easily
implemented on a computer system to automatically compute the explicit expressions of the
simplest normal form in terms of the coefficients of the original system.

The above-mentioned “unique” normal form is different from that discussed by Ushiki [17],
Baider and Sanders [18], Chua and Kokubu [19,20]. They used Lie algebra to define the first, the
second, ..., infinite order normal forms. Those unique normal forms are also called the
“minimum’” or the “simplest”” normal forms. In the conventional normal form (CNF) or classical
normal form theory, by saying that “normal forms are not unique” it usually implies that: (1) for
a same system, its normal form may have different “forms™; or (2) even for a same “form”, the
CNF may not be the same, with different coefficients. Thus, in this paper we shall adopt
the “simplest normal form™ rather than the “unique normal form”, emphasizing the meaning of
the ““simplest™, i.e., at each order of computation the number of the terms retained in the normal
form reaches the “minimum”. Computing the SNF of a system is much more involved than
calculating the CNF, and in fact computer algebra systems such as Maple, Mathematica have
been introduced in the calculations (for example, see Refs. [21-25]). However, all the computation
procedures presented in the above-mentioned papers are based on a known (or pre-calculated)
CNF, and thus needs one more NT from the original system. In this paper, it will be shown that
the perturbation method can be extended to obtain the SNF directly from the original differential
equations, which may be called “‘direct”” method. A comparison between the “direct” method and
the approach via the CNF (““indirect” method) is given to show the advantage of the “‘direct”
method developed in this paper.

After an outline of the classical normal form theory, the perturbation method and its procedure
to find the CNF of a dynamical system are described in the next section. A comparison is also
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given in this section to show the advantages of the perturbation technique. Section 3 considers the
SNF for Hopf and generalized Hopf bifurcations, while the SNF for Hopf-zero bifurcation is
presented in Section 4. A physical oscillator model is studied in detail in Section 5 to demonstrate
the applicability of the technique and the advantage of using the SNF for the study of dynamical
systems. The SNF can greatly simplify the dynamical analysis, in particular, for bifurcations and
stability. Finally, concluding remarks are drawn in Section 6.

2. Normal form theory and perturbation technique

Although normal form theory can be traced back to researchers 150 years ago, most credit
should be given to Poincaré. Later many researchers made contributions in developing the theory
and methodology for dynamical systems. Among them are Birkhoff and Takens, and this is why
the normal form theory is also called Poincaré normal form theory, Birkhoff normal form theory
or Takens normal form theory. Takens normal form theory, based on the linear structure of a
system, applies Lie algebra to give a very delicate formulation. To make it easy for a comparison
between the standard (conventional) normal form theory and the perturbation method, we first
outline Takens normal form theory as follows.

Consider the dynamical system described by the following differential equation:

i=f)=Jx+) fix), xeR" (1)

k=2

where J xe R represents the linear part of the system and J is in Jordan canonical form.
fi(x) (k=2)1is a vector of homogeneous polynomials of degree k. Suppose all the eigenvalues of J
have zero real parts, implying that system (1) is described on n-dimensional center manifold.

The purpose of Takens normal form theory is to find an efficient transformation such that the
transformed system will be in a simpler form, while the topological structure of the original system
near the origin is retained. To achieve this, we introduce a near-identity transformation in a
neighborhood of the origin, given by

x=hy)=y+hy +hhe)+ -+ @)+, 2)

where ye R" denotes the new co-ordinates, and A(y) is a vector of homogeneous polynomials of
degree k in y. Upon substitution of Eq. (2) into Eq. (1), we have h(y) = f(h(y)). Since h(y) =
(0h/0y)y, the equation of the new system can be written as

=0 ) fh(y) = k' Th(y) + b, (f5 (h(p) + ), (3)

where h, = 0h/0y is the first order derivative of & with respect to y, and hy, ! denotes the inverse of
h, in the neighborhood of the origin.

Computation of the normal form is a recursive procedure order by order. Suppose the
computation from the second order to k£ — 1 order has been done, we now process the kth order
calculation. Thus, the near-identity transformation can be assumed as k(y) = y + hi(y), and then
the first order derivative of A(y) with respect to y is given by

hy(y) = 1 + hiy(y), (4)
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and then the inverse of hy(y) can be approximated by the Taylor expansion
(hy ()" =1 — iy () + Sy — - =1 = Iy () + OWI*?) as [y] 0. (5)
Substituting Egs. (4) and (5) into Eq. (3) yields

k—1
V=T + > F O+ ) = Uiy3) Ty — T3]} + Oy, (6)
=2

which implies that a suitable choice of A(y) can result in the simplification of f*(p).
Next introduce a linear operator

LY v - HY,
(LY YY) = iy () Ty — J by (y)  for hye HY, (7)

where H,’f denotes the vector space of homogeneous polynomials of order k in n variables with
values in R". The operator L¥ is also called Lie bracket. Further, let P¥ be the range of L% in H*
and Q" be the complementary subspace to PX in H,’f, then we have

H =P 0" (k=2). (8)

Now Takens normal form theorem can be described as follows [2]: given the dynamical system (1),
let the decomposition (8) of homogeneous space H be given for k = 2, ..., r. Then there exists a
sequence of near-identity transformations, x = y + h(p), in a neighborhood of the origin, where
hie H* (k =2, ...,r), such that Eq. (1) is transformed into

,
P=Ty+> g+ oWy, )
k=1
where g, € 0" (k=2,3,...,r). It can be seen from the above discussion that the normal form is
determined on the basis chosen for the complementary subspaces O, k =2,3,...,r. These
subspaces are determined by the matrix J, but in general are not unique. Therefore, the normal
form is in general not uniquely determined.

However, Takens normal form theory only gives the “form” of the normal form, not telling you
how to find the explicit expression of the normal form. Thus, many computation methods have
been developed, such as matrix representation method (e.g., see Refs. [3,5]) and the method of
adjoint [4]. The matrix method is not efficient since the dimension of the matrices increases very
rapidly as the order of the normal form increases, which is, in particular, not suitable for
computing higher order normal forms. The method of adjoint, on the other hand, introduces an
additional adjoint operator so that the basis for the complementary space is uniquely determined,
which may be difficult for those who (e.g., from engineering society) may just want to apply the
method of normal forms to solve a particular problem.

There are many other approaches often used in engineering society which may also lead to
normal forms, though they are not usually called normal forms. We list some of such well known
approaches: Lyapunov constants, succession function, Lindstedt—Poincaré method, Lyapunov—
Schmidt reduction, time averaging, MTSs, intrinsic harmonic balancing, etc. The method of
MTSs has been used by many researchers for analyzing vibration and stability of oscillator
systems. In a paper published in 1998 [7], this method was first applied together with a
perturbation technique to develop ‘“‘automatic” symbolic computation for the normal forms of
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Hopf and generalized Hopf bifurcations. Later, this method is generalized to consider other
singularities [11,12].

Before giving a comparison between the perturbation technique and the classical normal form
theory (e.g., Takens normal form theory), we present the perturbation technique below, showing
how to use this approach to compute the CNF of a general non-linear system. The computation of
the SNF will be discussed in the next two sections.

The perturbation method is based on the approach of multiple scales or MTSs, which is
frequently used for vibration analysis of a dynamical system governed by a second order non-
linear differential equation (e.g., single pendulum) [14]:

X+ x=¢f(x,x), (10)

where the dot indicates the differentiation with respect to time z, and ¢ is a small perturbation
parameter (0<e<« 1). f is a non-linear analytic function and can thus be expressed in a Taylor
expansion. Recently, the perturbation approach has been extended to consider general n-
dimensional systems [7,9,11,12], described by

x=f(x), xeR", (11)

where f is assumed to be analytic; and x = 0 is an equilibrium of the system, i.e., f(0) = 0. In Ref.
[7] a user-friendly (“‘automatic”’) symbolic computer program written in Maple has been
developed for computing the CNF associated with the Hopf-type singularity (i.e., the Jacobian of
the system has a pair of purely imaginary eigenvalues). Maple programs have also been developed
for other singularities, including those associated with the Jordan canonical matrix

Jo O
J= , (12)
0 J
where Jj is given in one of the following forms:
_ 0 w. 0
0 W,
(A) Jy= ], B) Jo=|-ow. 0 0f,
-, 0
- 0 0 0
0 w,., 0 0 0 o 1 0
©) Jo= —wie 0 0 0 D) Jo = —w, 0 0 (13)
"l o 0 0 ol 1o 0 0 ol
L 0 0 —wy O 0 0 —w. 0

and J;, given in Jordan canonical form, involves eigenvalues which have negative real parts. In
other words, system (11) does not contain unstable manifold in the vicinity of the origin, which is
reasonable from the application point of view. Note that here the frequencies w, w; and w, are
positive, and the ratio w;/w, may be an irrational number (non-resonant case) or a form of a
fraction number, m/n, in which m and n are positive integers (resonant cases). Also, note that
without loss of generality, we may assume w. = 1 (otherwise, one may use a transformation
{' = w.t to change frequency w, or w; to 1). It should be pointed out that although the
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perturbation approach has been applied only to the above-mentioned cases, it can be easily
extended to consider other cases in which the eigenvalues of Jy have more zero real parts.

Since the procedure involved in the perturbation approach is similar for all the cases mentioned
above, and cases (A), (C) and (D) have been studied in detail in Refs. [7,11,12] so in the following
we shall use case (B) to illustrate how the perturbation approach is applied to derive the explicit
formulas of the CNF and the associated NT. To begin with we may write Eq. (11) in a more
convenient component form:

X1 = x2 + fi(x), (14)
X = —x1 + fa(x), (15)
X3 = f3(x), (16)
Xp = —opx, + fo(x) (p=4,5...,m +3), (17)
Xg = — 0gXq + 0gXgi1 + fo(X),
Xgi1 = — 0gXg — 0gXgi1 + fg1(x)  (g=my+4,m +6,...,n—1), (18)

where a,, o,, ;>0 and 3 + m; 4+ 2m, = n. The functions f;(x) satisfy fi(x) = 0 and 0fj(x)/0x; =
0, i,j=1,2,...,n.

The underlying idea of the method of MTS is combining the time scaling with spatial scaling via
the same perturbation parameter ¢. Let us first consider the expansion which represents the
response as a function of multiple independent variables, or scales, instead of a single time
variable. Thus, one begins by introducing new independent variables according to

Ty =¢t fork=0,1,2,.... (19)

It follows that the derivatives with respect to £ now become expansions in terms of the partial
derivatives with respect to T}, given by

d d7, 0 dTy 0 dT» 0O )
- - 1 = 2 ... =D D D+ - 20
dr dt 6T0+dz 6T1+dt aTzJr 0PI ED 29
where the differentiation operator Dy = 0/0Ty, k=0,1,2, ...
Next, assume that the solution of Eq. (11) (or equivalently, Egs. (14)—(18)) in the neighborhood
of x = 0 is given in the form of

xit;€) = exi(To, Th, ...) + ex0(To, T, ..) + -+ (i=1,2,...,n). (21)

Note that the perturbation parameter ¢ used in the above solution is identical to that used in
Eq. (19) for time scaling. The number of independent time scales needed in Eq. (21) depends on
the order of the normal form to be computed. For instance, if the expansion is given to order &,
then Ty, T and T, are needed in the expansion. In general, if one wants to derive a normal form
up to order k, then time scales Ty, T}, ..., T} should be included in solution (21).

Now substituting solution (21) into Eqgs. (14)—(18) with the aid of Eq. (20) and balancing the
like powers of ¢ in the resulting equations yields the following ordered perturbation equations:

s Doxii = X1, (22)
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Doxy1 = —x11, (23)
Do X31 = 0, (24)
Do xp1 = —p x50 (p=4,5,...,m +3), (25)
Dy xy1 = —oty Xq1 + 0y X(g+1)15
Dy X(g+1)l = — g Xq1 — Oy X(g+1)1 (q =m +4,m+6,....,n—1) (26)
e Doxip = xp — Dy x11 + fia(x1), (27)
Dy x2p = —x12 — Dy x21 + f2o(x1), (28)
Do x3 = —D1 x31 + f32(x1), (29)
DO Xp2 = —0p Xp2 — D, Xpl +ﬁ72(xl) (p = 4a 5; e, my + 3)’ (30)
Do xq1 = =0y Xg1 + 0g X(gr1)1 — D1 X1 + fp(x1),
Do X(gr1)1 = =g Xq1 — g X(g+1)1 — D1 X(gs1y1 + fig+1) 2(x1)
(g=m +4,m +6,....,n—1), (31)

etc., where f» = (dz/dsz)f,-(xl)lgzo. Note that fj» are functions of x;; (i =1,2,...,n) only, which
have been solved from the &' order perturbation Egs. (22)~(26). In general, functions fj only
involve the variables which have been obtained from the previous (k — 1) step perturbation
equations. It should be also noted that the power series (21) starts from O(¢) order term rather
than O(1) order term in order to separate the original equations into different order terms in e.
Usually, one should first use a forward scaling x; — ¢x; in Eqs. (14)—(18), which separates the terms
according to the powers of ¢, and then the series (21) can be expanded from O(1) order term. Here,
we have combined the forward scaling into the solution form (21).

To find the solutions to Eqgs. (22)—(25), first note that these equations can be divided into two
groups, one consists of Eqs. (22)—(24), and the other includes the remaining equations. Secondly,
since we are interested in the asymptotic behavior of the system, so the solutions of the second
group are contributed from the first three variables x;, x, and x3 only. This is in fact the idea of
center manifold theory.

The solutions to Egs.(22) and (23) can be found by differentiating Eq. (21) and then
substituting Eq. (22) into the resulting equation, which produces a simple second order, free
vibration equation:

D(%X]l + x11 =0, (32)
from which one can readily obtain the solution, written in a general form:
x11 =Ty, Ty, ...)cos[Ty + ¢(Ty, T, ...)] = rcos(Ty + ¢) = rcos b, (33)

where r and ¢ represent, respectively, the amplitude and phase of motion, and 0 = w. Ty + ¢ =
To + ¢. Once the solution xi; is obtained, x;; can be directly determined from Eq. (22). The
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solution to Eq. (24) is simply given by
X31 :Z(Tl,Tz,...)EZ. (34)

It can be seen from solutions (33) and (34) that
Dol" = Dod) = D()Z = 0, (35)

since the variables r and z do not contain T,. The asymptotic ¢! order solutions of the second
group, given by

xp =0, i=4,5,..,n, (36)

actually represent the first order steady state solutions for the second group.
The above procedure can be carried out to &> order perturbation equations (27) and (28) to find
the following equation:

D} x12 + x12 = =D Dox11 — D1x21 + Dofia + f, (37)

which is a non-linear homogeneous ordinary differential equation. Substituting the solutions x;
and x;; obtained from the first order perturbation equations into the right-hand side of Eq. (37)
results in an expression given in terms of trigonometric functions cos k(7o + ¢) and sin k(T +
¢), k=0,1,2. To eliminate possible secular terms which may appear in the solution of x5, it is
required that the coefficients of the two terms cos(7y + ¢) and sin(7y + ¢) equal zero, which in
turn determines the expressions for D;r and D;¢. Then the solution to the second order
perturbation equation can be determined, and thus x;, involves a particular solution only. Having
found x5, one can solve x5, from Eq. (27). Similarly, Eq. (29) can be used to determine D z and
to find the solution for x3; by simply balancing the harmonics. The solutions for other
components of xp, i =4,5,... can be easily obtained from Egs. (30) and (31) by harmonic
balancing.

The procedure can be applied to any high order perturbation equations, and finally, the normal
form is obtained, given in polar co-ordinates:

. or aT() or 8T1 or 6T2
el U el Wl TR 5\ D D 38
"=orn o Tom ot om o or + Dur o+ Dor o0, (38)

. o¢p 0T o¢ oT o¢p oT:
O— o 4 00 0T0 00T 0¢ 0Ty

— W, 4+ 2 i =14 Do+ Dy + D 39
oT, ot oT, ot on, ot + Do+ Dig+ Dog + (39)

z 0T z 0T z OT

z—j—T{)% aa—Tl%+8a—T2%+---—Doz+Dlz+Dzz+---, (40)
where the back scaling er —r (i.e., ex; — x;) has been used. It has been shown through the above
procedure that D;r, D;¢p and D,z are monomials of r and z. It should be pointed out that the
particular solution to the differential equation (37), etc. can be found using the intrinsic harmonic
balancing [15] so that the solution is uniquely determined from three algebraic equations. Thus,
D;r, D;¢p and D;z are also uniquely defined, which implies that the normal form given in Egs. (38)—
(40) is actually uniquely determined.
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The NT between system (11) and the CNF described by Egs. (38)—(40) can be easily found from
the solutions x; if the transformation:

yr=rcosf, y,=—rsinf, y;=rz, (41)

is applied. Note that the resulting NT not only includes the transformation on the 3-D center
manifold spanned by the critical variables x;, x, and x3, but also contains the projection of the
subspace spanned by the non-critical variables xq4, xs, ..., X, to the center manifold. This is why the
perturbation method can be used to find normal forms from the original n-dimensional system
without employing center manifold theory.

The above discussion as well as the results obtained in Refs. [7,11,12] suggest that the
perturbation technique, compared with the classical normal form theory (e.g., Takens normal
form theory) has the following advantages:

(1) The perturbation technique combines center manifold theory and normal form theory in one
unified procedure and can be used to treat a general non-linear system whose dimension is
greater than its center manifold’s dimension.

(2) The technique determines a unique normal form.

(3) The perturbation procedure, unlike the matrix method, does not increase the number of the
equations (whose number is equal to the dimension of the system) to be solved at each
perturbation order.

(4) The approach, unlike other methods which need to solve differential equations, needs to solve
only algebraic equations.

(5) The method generates explicit solutions for both the normal form and associated NT.

(6) The technique uses one consistent NT through all order equations, which is convenient in
applications.

(7) The approach is computationally efficient. The results given in Ref. [7] show that the
perturbation technique can be used to verify a center of a system up to 60th order, which
certainly cannot be handled by the matrix method.

The weakness of the perturbation technique is that it can only be applied to the systems whose
Jacobian contains at least one pair of purely imaginary eigenvalues. It is not applicable to purely
zero (e.g., double zero) singularity.

The CNF given by Eqgs. (38)—(40) for Hopf-zero singularity can be further simplified. In fact,
Ushiki [17] applied Lie algebra to consider this case and obtained a simpler form than the CNF.
However, the simpler form given in Ref. [17] is only up to fifth order. In the following two
sections, we will extend the perturbation technique described above to compute the SNF of system
(11) up to any order. In particular, we focus on two singularities: one is associated with Hopf and
generalized Hopf bifurcations, and the other with Hopf-zero bifurcation.

3. The SNF for Hopf and generalized Hopf bifurcations

For a system associated with Hopf singularity, i.e., the Jacobian of the system contains a pair of
purely imaginary eigenvalues; Baider and Churchill [26] developed grading functions to obtain the
simplest “form”. In general, they defined the first, the second, ..., infinite order normal forms, and
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the first order normal form is actually the CNF. The CNFs of Hopf and generalized Hopf
bifurcations obtained using the perturbation method can be found in Ref. [7], where it is shown
that the perturbation technique is computationally efficient. It was used to confirm the results of a
planar system up to the 60th order. Recently, explicit computation of the SNF for Hopf and
generalized Hopf bifurcations have been developed. Based on a general CNF, the explicit SNF
and associated NT are obtained [22].

To be more specific, consider the system

x=Jx+ F(x), xeR", (42)
where function F and its first derivative vanish at the origin 0, and J is given by
0 1 0
J=|-1 0 0|, AeR"Ixr=2, (43)
0 0 4

in which A4 is “stable” (i.e., all eigenvalues of 4 have negative real parts).
By using the perturbation technique described in the previous section (the Maple program is
available in Ref. [3]) one can find the CNF of system (42), given in polar co-ordinates:

i'=Dor + Dar + Der + -+ + Dapr + -+

— 3 5 7 2n+1
=aprr +aistt Fanr + o+ aieernt + -

0 =1+ Dyp+ Dagp+Dsp+ -+ Dyyp+ -

(44)
=1+ a237'2 + 02574 + 0271”6 + -+ a2(2n+1)r2” + -,

where the notations D;r and D;¢ have similar meaning as that given in Egs. (38) and (39). The
coefficients a;;’s are expressed explicitly in terms of the coefficients of the original function F.

Based on the CNF given in Eq. (44), the explicit formulas of the SNF of Hopf and generalized
Hopf bifurcations have been obtained by Yu [22] as

R= ans R + ais R’
Hopf ) if a;3#0; 45
(Hopf) {@:1+a23R2 13 (45)
(GH-T) R = a1 ) R¥* + byap R,
O =1+ ay o1 R*,
i a3 =dyjs = 0 = aA1k-1) = 0, al(2k+1)7é0, (46)
axy = ays = -+ = ayok—-1) = 0;
(GH-IT) R = a1y R* + byarn R*H,
O =1+ by )RV + byagsy-nRY + - + o1y R,
i a3 =ais = - = ayk-1) = 0, aeis1) #0, (@7
ap = axs = - = axoj—3) = 0, aj-n#0 (2<j<k),
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where GH denotes the generalized Hopf bifurcation. The coefficients b;;’s are explicitly expressed
in terms of the g;’s. The proof and the detailed computation procedure can be found in Ref. [22].
The general idea of the proof is that the two kth order coefficients of the NT can be used to
eliminate the two (k + 1)th order CNF coefficients.

The approach described above for computing the SNF is via the CNF in two steps: the first step
is to find the CNF from the original n-dimensional system using a CNF method; and the second
step is to further simplify the CNF described on the 2-D center manifold to obtain the SNF. Thus,
the NT between the original system and the SNF cannot be obtained directly. One must combine
the two NTs, one from the original system to the CNF and the other from the CNF to the SNF, to
find the required NT. This is quite time consuming, in particular, for higher order normal forms.
Therefore, it is necessary to develop a method to compute the SNF directly from the original
system (42). In the following, the perturbation technique, used to find CNF from system (42), will
be extended to compute the SNF directly from system (42).

In order to achieve this, i.e., to use the perturbation approach described in the previous section
to directly compute the SNF as well as the associated NT, first note that in the previous section
when we solve a differential equation (e.g., Eq. (37)) after the secular terms are removed, we only
assume a form for the particular solution (as usually used in the method of MTS, e.g., x12 = x%,)
and then wuse the method of harmonic balance (e.g., x{, =po+ pscos2To+
sin 2Ty + p3 cos 3T + sin 37)) to find the unique particular solution. However, in general, the
solution to a non-homogeneous differential equation should include two parts: one is the
particular solution while the other is the solution to the homogeneous equation (e.g.,
D%xlz + x12 = 0). Therefore, for the kth order perturbation equation, in addition to the particular
solution, one may have an extra part (homogeneous solution), given in the general form:
A ¥t cos Ty + Br r*'sin T,. The two extra coefficients Ay and Bj introduced in the
homogeneous solution can be taken arbitrarily since this solution automatically satisfies the
homogeneous differential equation. Hence, instead of using Dya and Dy ¢ to eliminate the secular
terms at the kth order perturbation equation (which is the main step in using the perturbation
technique to compute the CNF) one may use the two extra coefficients 45 and By to balance the
secular terms, and therefore Dya and Dy¢ can be set zero, resulting in a simpler form—the SNF.

To show the detailed procedure, we can still use Egs. (14)—(18) to consider the Hopf bifurcation
by neglecting Eq. (16) which corresponds to the zero eigenvalue. Let us look again at Eq. (37)
which is a second order, non-homogeneous differential equation. The general form of solution to
this equation can be written as

X2 = Xy + ¥, (48)

where x’fz represents the solution to the homogeneous differential equation D% X2 +x10 =0,

whereas x7, denotes a particular solution to Eq. (37). The part x’l’2 was not included in the solution
(i.e., x’f2 = 0) when we were deriving the CNF in the previous section. It is easy to see that the
solution of x/, can be written in the form of

x’fz = A cos(Ty) + By sin(Ty), (49)
where 4, and B;; are monomials of r, to be determined by harmonic balance. However, it should

be noted that for Hopf bifurcation all the terms appearing on the right-hand side of Eq. (37) can
be put in the form of Cr?, where C is a constant. Thus, in order to explicitly show r in Eq. (49), we
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may rewrite Eq. (49) as
xll“2 = Ay 1 cos(Ty) + Bayr? sin(Ty), (50)

where A,; and B,; are now arbitrary constant coefficients. Also, note that the r appearing in the
above solution should be treated as a variable of the MTSs, T, 7>, .... Thus, it will generate
derivatives Dir, Dor, etc. when it is substituted into higher order perturbation equations. In
general, similar to Eq. (50), one can write the solution form

X!, = Ay 17 cos(Ty) + Bay 1777 sin(Ty) (51)

for the (2k + 1)th order perturbation equation. However, the coefficients 4,; | and By | cannot be
used to simplify the (2k + 1)th order normal form coefficients, but the (2k + 3)th order normal
form coefficients. For example, the third order CNF coefficients a;3 and a»3 (see Eq. (44)) of Hopf
bifurcation cannot be eliminated since the coefficients 4y, and By, do not exist. For the fifth order
CNEF coefficients a5 and a»s, the coefficient B, can be used to eliminate a»s, whereas A4, cannot
be used, and thus a;5 has to be retained. In general, the (2k + 3)th order (k>=2) CNF coefficients
a3 and axpy3 can be removed using both Ay, | and Bsy ;. The results obtained from the above
discussion are summarized below.

3.1. Hopf

If Dyr+#0 (i.e., a;3#0, here we use the notation D rather than the a coefficients
since the Maple program uses D notation), then

B>y = D4y =0 (4> can be set zero),
Aoy = Dagyor =0

for k=2, (52)
By 1 = Dyjyap =0
where the notation = means an elimination. For example, By; = D4¢ = 0 implies that D4¢ can
be eliminated using the coefficient B,;. Thus, the SNF of Hopf bifurcation can be found as

R = Dyr(R) + Dyr(R) = a3 R3 + a5R°,

. X (53)
0=1 Jrl)z(,lﬁ(R)E 1 + a»3R~,
up to any order. Note that we use the explicit expression D,r(R), D4r(R) and D>¢(R) to indicate
that the variable » for the CNF has been replaced by R in the expression of the derivatives. The
coefficients a3, a5 and a3 are identical to those given in Eq. (44) and thus the above equation
obtained using the perturbation technique is identical to that obtained in Ref. [22], given by
Eq. (45).
When D,r = 0, we can similarly find the procedure for computing the SNF of the generalized
Hopf bifurcations given in Eqgs. (46) and (47). The proof is omitted here but the detailed ‘“‘rules”
for choosing A, | and By to eliminate Doy and Dyy.o¢ are listed below.
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3.2. GH-1
If
Dyr =Dyr = - = Dy_or=0, Dyr#0,
Dyp = Dy = - = Dy 29 =0;
then
first terms: Dyr#0 and Dy ¢,
Az = Doyjyar =0,
By1 = D¢ =0,
Ag1r = Dopyar =0,
Bsi = Doy =0,
Axye—21 = Dgor=0, (54)
By21 = D29 =0,
(A2k1) = Dayr#0,
By1 = Dy =0,
Axer21 = Dagyor =0,
Byci21 = Dagiagp =0,

Note that the coefficient A, does not appear in the corresponding equation and thus Dyr
cannot be eliminated. (A4, 1 can be set zero.) Therefore, the SNF for this case is given by

R = Dyr(R) + Dyyer(R) = ayouy R + by R,
O =1+ Dyd(R) = 1 + a1y R, (55)
which is the same as Eq. (46) obtained before [22].

3.3. GH-1I
If
Dyr = Dyr = -+ = Doyjor =0, Dyr#0,
Dyp = Dyp = - = Dy 4p =0, Dy 29#0; for 2<j<k,
then
By 21 #0,

By 1 #0,

By—21#0,
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A1 #0,

B 1 #0,

% By = Doyior =0,
Byiy21 = Dopya¢p =0,
By = Dajyar =0,
Boria1 = Dycpap =0,

* % Ay 1 = Dag_sjpar = 0,
By 1 = Daj—2j14¢ =0,
A4 1 = Dyg2jr6r =0,
Buji21 = Dag—2jr6¢ =0,

Asj_61 = Day_4r =0,

Bur—2j1 = Dai—a¢p =0,

Asj_41 = Dy_or =0,

Byj—2j421 = Da—2¢ =0,

# % x(Agj-21) = Dayr #0,

By 2441 = Dy =0,

Azj1 = Dygior =0,

Buy—2j161 = Daji2p = 0,

: (56)
Note that in case GH-I, the coefficients A4,; | and By;| are consistently used to eliminate Dy; oxr
and D,; 21 ¢, respectively; while for case GH-II these two coefficients must exchange their rules at

the place marked by * x. Again, Dy r+#0 is due to the fact that the coefficient 45, does not
appear in the equation (and can thus be set to zero). The SNF for this case is given by

R = Dyr(R) 4+ Dyr(R)
= a1k 1y R + by R*
O =1+ Dy 2(R) + -+ + Dy p(R)
=1+ by RV 4+ baogity-yRY + -+ + baor 1) R, (57)

which is identical to that given in Eq. (47).

It should be pointed out that without the results and the proof presented in Ref. [22], it is very
difficult (if not impossible) to find the “‘rule” of computing the coefficients A,;; and By,
especially for case GH-II.

The perturbation procedure described in the previous section and this section can be easily
implemented using a computer algebra system such as Maple or Mathematica. In fact, Maple
programs for computing the SNF of Hopf and generalized Hopf bifurcations have been
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developed, and the results for the examples presented in Section 5 are obtained by executing the
Maple programs. The Maple source code can be found in this journal and Appendix A. The
programs have been coded in a user-friendly fashion, which can be “automatically’” executed on a
main frame, a work station or a PC without users’ interaction.

4. The SNF for Hopf-zero bifurcation

In this section, we turn to consider the SNF of Hopf-zero bifurcation using the perturbation
approach. The SNF for the generic case of Hopf-zero singularity was first reported in Ref. [17]
using the Lie algebra approach, but that form was given only up to fifth order. Recently, this case
has been reconsidered Refs. [21,23], and the SNF for the generic case has been obtained explicitly
up to any order [23]. The proof given in Ref. [23] for the Hopf-zero singularity, based on the CNF,
follows the similar idea for Hopf and generalized Hopf bifurcations [22].

Let us consider the system

x=Jx+F(x), xeR", (58)

with F;(0) = 0F;(0)/ox; =0, i,j = 1,2, ..., n, but the Jacobian J now is given by

AeR(n73)><(n73), (59)

o
o o o =
o o o o
N O o o

where A is a stable matrix. By the normal form theory, the CNF of system (58) can be found in the
cylindrical co-ordinates up to an arbitrary order n in the form of (e.g., see Refs. [21,23])

my i my i
L 2 (i) 2) 2 (i) 2j+1
F=r|apo z+ E E ay sy oy 2+ g g ar oy 2,
=1 j=0 =1 j=0
mj i my i
) _ 2 (i) 2 2 (i—j) 2j+1
rO=r1+amz+Y Y araipyr F D> ara o 2,
=1 j=0 =1 j=0
o .
2=
i=1

1 nmi 1
a3yt Y as oy o1 - 2, (60)
0 = =0

J= J=
where my =nmpy +1=m3 = %(n — 1) when 7 is an odd integer; and m; =my =m3 — 1 =n/2 — 1
when 7 is an even integer. The coefficients a;;’s are given explicitly in terms of the original
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coefficients of function F. Then, based on Eq. (60), it has been proved that the SNF of system (58)
up to an arbitrary order n is given by Ref. [23]

R =R(b101Z + b12gR? + biggRY),

ms3
O =1+ b1 Z + by R* + Z by Z*,
i—

ms mi
Z=bsnZ" + b33 Z® + Y b32oR+ Y b3y RV Z, (61)
i=1 i=1

if ajo1/asp: is not an algebraic number. In particular, ajo; and aszp, should satisfy the following
conditions:

2(my — )ajr + i — 1) azpp#0 fori=1,2,....k; k=1,2,...,m,
(m; —Daor + (@ — Daza#0 fori=0,1,....k; k=0,1,...,m, (62)

when #» is odd; and

2my+1—=0Dajg +Qi—3)azp#0 fori=1,2,....k; k=1,2,...,my,
(my — a1 +iazp#0 fori=0,1,....k; k=0,1,...,m, (63)

when 7 is even. Here, note in Eq. (61) that b19; = aj01, D201 = @201, b320 = a3z0, D302 = @302, and
other coefficients are expressed explicitly in terms of a;’s.

The similar idea and procedure used in the previous section for computing the SNF of Hopf
bifurcation can be applied here to directly compute the SNF of the Hopf-zero singularity using
the perturbation approach. However, the procedure is more involved for this case. Again consider
the differential equation (37) for which we can still use the general solution form given by Eq. (48),
but we must change Eq. (49) to the form

X;ll2 = l’[A2 112 COS(TO) + BZ 112 Sin(TO)]’ (64)

where the coefficient rz follows the pattern of the second terms in the first two equations of
Eq. (60). In addition, following the pattern of the third equation of Eq. (60), one can have another
equation, given by

Xy =Coagr’ + G2 2 (65)
Thus, we have a total of four arbitrary coefficients 4, | |, B> 11, C22¢ and C; o, which can be used
in the third-order perturbation equations to possibly eliminate D, r, D, ¢ and D, z. It is clear that
the second-order CNF given in Eq. (60) cannot be simplified since no coefficients can be used at
this step.

According to the pattern of the CNF given in Eq. (60), it is easy to find the general formulas for
the homogeneous solution, written in the form of

Xy = Ay 7 24 Ay TS A Ay 72 cos(Th)
+ (Bnnfl 1 Vn_l z+ Byu3s rn—2 23 + -+ B an_l) Sin(TO),
xéln:Cnllorn+cnn722rn7222+"'+Cn0nzn (66)
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when » is an even number; and
X/fn =Apno" + Ann-22 e R ”Zn_l) cos(7))
+ Buno " + Byna2/" 22 4 o+ By 12" ) sin(Tp),
xlgn =Crpi 1P 24+ Cruzs 24+ Cron (67)
when 7 is an odd number.
Next, from the pattern of the SNF described by Eq. (61) we may find the procedure to solve the

coefficients from the ordered perturbation equations. The procedure is similar to that for the Hopf
bifurcation; thus, we only show the computation procedure below for brevity.

Second order:

Ist Eqn.: rz
2nd Eqn.: rz (cannot be simplified).
3rd Eqn.: > z

Third order:

Ist Eqn.: 73 rz>  term 3 retained,
Az 11
2nd Eqn.: #? rz>  term 3 retained,
B>y
3rd Eqn.: r?z 23 term z° retained.
G20
Fourth order:
Ist Eqn.: rz rZ?
Aszzo Asi2
2nd Eqn.: z rZ?
Byso Bsia
3rd Eqn.: r* P2 term r* retained,
Gar Gios,
Fifth order:
Ist Eqn.: 7’ P2 orzt term r° retained,
Agz1 Azis
2nd Eqn.: P2 orzt term rz* retained,
Bys1 Bsys
3rd Eqn.: ‘'z 223 2

Cia0 Ci22 Cao4.
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kth order:
k=6 (even)
Ist Eqn.: 71z k=3 23 e gkl
Ar—1k-10 Ar—1x=32 -+ Ax-11k-2
2nd Eqn.: 1z k=3 73 oo p kTl
Bi k10 Br1k-32 - Bri1ko
3rd Eqn.: #* P2 22 2K
Ceoti0o - Ci_10x_ term r* retained.
kth order:
k=6 (odd)
Ist Eqn. : rk rk=2 22 ezl
*Cr1k—10 Ak—1k—21 - Ar-11k-2
2nd Eqn.: #* k=2 2 e r k-l term rzF~! retained,
Bi 1k21  Br1k-43
3rd Eqn.: 7'z k=3 23 2k
Ciotizr -+ Cr_iox_1 term r*1z retained.
4.1. Notes

(1) Although the CNF coefficients are referred in the above notations, the computations
including the algorithm and Maple program are not restricted to the CNF, but for the general
system (58).

(2) The notations of the 1st, 2nd, and 3rd Eqns. denote the 1st, 2nd and 3rd equations of Eq. (60),
respectively.

(3) The variables like rz, rz?, etc. represent the pattern of the terms appearing in the
corresponding order perturbation equation.

(4) A coefficient given under a pattern variable means that the pattern variable can be eliminated
by using the coefficient. For example, in the fifth order perturbation equation, the term r* z?
can be removed using the coefficient 443 1.

(5) If a variable does not have a corresponding coefficient, then the variable must be retained in
the SNF. For example, the variable r° in the fifth order perturbation equation must be
retained in the SNF.

(6) Unlike Hopf and generalized Hopf bifurcations, the “form™ of the SNF for Hopf-zero
bifurcation is not unique. This can be seen from the above list that we could use the
coefficients to eliminate the pattern variable other than those assigned in the list. For example,
it is seen from the fifth order perturbation equation that one may use the coefficients A4 3
and A4 | 3 to eliminate ° and r* z2, or > and r z*. However, once a “‘form” like the one listed
above is selected, the SNF is unique.

(7) In the third order perturbation equation, the coefficient C,(, is not used, and has been set
zero. In fact, it can been shown that at this order perturbation (and only at this order
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perturbation) only three of the four linear algebraic equations, which involve the four
coefficients 4511, Bo11, Coo9 and C, g, are independent. Further, one may prove that one
such remaining coefficient from this order perturbation equation cannot be used for
simplifying higher order normal forms.

5. An oscillator model

In this section, we use the double pendulum system, shown in Fig. 1, to demonstrate the
application of the results obtained in the previous sections and the Maple programs developed in
this paper. This double pendulum model has been considered by many authors (e.g., see
Refs. [8,15,27]) for a number of singularities including Hopf, double zero, Hopf-zero, and
double Hopf bifurcation. However, the equations (presented in all these papers) describing the
motion of the system are expanded up to only third order terms. In other words, all higher order
terms are neglected. Here, in order to obtain the SNF of Hopf bifurcation, one needs to expand
the equations up to fifth order. For generalized Hopf bifurcations, the equations must be
expanded at least up to ninth order. Such high order expansions result in enormous large
expressions (with more than 700 lines computer output), and developing efficient computation
methods is essential.

The double pendulum system (Fig. 1) consists of two rigid weightless links of equal length /
which carry two concentrated masses 2 m and m, respectively. A follower force P is applied to this
system.

The system energy for the three linear springs ki, k» and k3 is given in the form of

V= %lﬂ 9% + %k2 9% + %kS P(sin 0, + sin 0,)?, (68)

0.

Fig. 1. A double pendulum system.
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where 0; and 0, are generalized co-ordinates which specify the configuration of the system
completely. The kinetic energy T of the system is expressed by

_m12

T=—"_
2 Q?

[307 4 67 +20) 0, cos(6, — 62)], (69)

where @ is an arbitrary value rendering the time variable non-dimensional [15], and the prime
denotes differentiation with respect to the non-dimensional time variable T with T = Q¢.
The generalized force corresponding to the generalized co-ordinates 0; and 6, may be written as

Q = Plsin(0, — 0y), (70)

and the damping is assumed to be

D =1[d) 07 + do(0) — 0)°] — § d5(0) — 05)°, (71)
where d, d> represents the linear parts and d3 describes the non-linear parts, respectively. In
general, one may assume that d;, d>, d3 >0, indicating that the system has positive linear damping,

but may have a negative non-linear damping term.
With the aid of the Lagrangian equations, in addition, choosing the state variables

z1 = 0y, 22:9’1, z3=0, and z4=0,, (72)
one can find a set of first order differential equations as follows:
Z) =z,
2y =Lcos(zi — z3){—fiz1 — fo(z1 — 23) — 1y 22 — My (22 — z4) — 2z sin(z) — z3)
— fy cos(z;) (sin zy + sin z3) + f3 sin(z; — z5) + f5 (22 — 24)°
— cos(z1 — 23)lf2 (21 — 23) + 1y (22 — 24) + 2 23 sin(z) — 23)
— fcos(z3)(sin zy + sinz3) — f5 (22 — z4)°1},
2=z,
ziy =%cos(z1 — z3){3[f2 (21 — 23) + 1y (22 — z4) + 2 73 sin(zy — 23)
— f3cos(z3)(sin z; + sin z3) — f5 (22 — 24)°]
+ cos(zi —z)fizi + 2 (21 —z3) + 22+ 15 (22 — 24)

+ 2z3sin(z; — z3) 4 f3 cos(z;) (sin z; + sin z3)

~ fasin(z1 = zs) = fs (22 — za)'T}, (73)
where f;’s and #;’s are dimensionless coefficients, defined as
k@ k@ k@ PQ’
N P BT T
d;Q* d Q >
fS mlz, ni m129 Up) ml2a ( )

and f1, f>, f3=0 due to physical restrictions, and fs, 1,7, =>0.
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The Jacobian matrix of Eq. (73) evaluated at an arbitrary point at the initial equilibrium
solution z; = 0 takes the form

0 1 0 0

—%fl —f2+%f4 —772—%771 /2 —%f4 Up)

0 0 0 1
NH26—fi—3fa 2m+in 2h—fi+ifa 2,

from which one may obtain the characteristic polynomial

J = (75)

PO =+a P+ a2’ + a3 A+ as, (76)
where

ai :%’71 + 31y,

a = 3f3 +%’71 Up) ‘f‘%fl —fa+ 13,

a3 =2mf3 +%f1 P +%’71f3 +%’71.f25
ay =2 s +50 3N~ fifa

Applying the Hurwitz criterion shows that when

(77)

ar>0, a>0, as>0 and a3 (@q1a; —az) — ay a% >0, (78)

the initial equilibrium solution z; = 0 is stable. It should be noted that the conditions given in
Eq. (78) implies a3 > 0, which is of course as expected. It is easy to show that Hopf bifurcation
occurs when a3 (a) ay — a3) — ag a} = 0, at which the Jacobian has a pair of purely imaginary
eigenvalues while the other two eigenvalues still have negative real parts. When a; a; — a3 = 0 and
as = 0, the Jacobian has a Hopf-zero singularity.

In this paper, we focus on the computation of the SNF without perturbation parameters
(unfolding). The computation of the SNFs for two cases are given below. Simple bifurcation and
stability analysis are presented to show the advantage of using the SNF.

5.1. Hopf and generalized Hopf bifurcations

We shall compute the SNFs for Hopf and two generalized Hopf bifurcations.

5.1.1. Hopf: a;3#0
For this case, one can find a critical point, defined by

ﬁzsv f2:%, ﬁ:%’ ﬂ:, f5:35 ’71:%9 ]/]2:37 (79)

at which the eigenvalues of the Jacobian are

Bl

Jia= i, da=—L =9 (80)
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With the linear transformation

Z1 1 0 4 1 X1
2| _ 0 11 -1 —493 X2 ’ @1
z3 I — -4 —5||x
Z4 % 1 1 % X4
one can obtain the Jordan canonical form for the linear part:
01 0 0
J. - -1 0 0 0 . 82)
0 0 —% 0
0 0 0 -9

Substituting the transformation (81) into Eq. (73) and expanding the resulting equations in Taylor
series up to, say, ninth order yields 780 lines computer output for the four equations, and thus are
not presented here. (The computer input files are available from the website: http://
www.pyul.apmaths.uwo.ca/ pyu/pub/software.)

For this example, we have used two procedures to find the SNF: the first procedure is an
indirect approach, combining the computations of the CNF and then the SNF obtained on the
basis of the CNF using the method given in Ref. [22]. The second procedure is the direct method
developed in this paper to compute the SNF from the four transformed state equations directly. A
comparison for the two approaches will be given to show the advantage of the direct method.

The first procedure is described as follows: executing the Maple program given in Ref. [7] yields
the CNF up to, say, ninth order:

j = 1373 r3 ___20503743297091 7'5 _ _617766602346825150499326839 ’,7
T 3568604 6435410619269120 300804815004191395658543923200

208541212477078660527047077255149233854109 l’9+

230573050515681687613954117620295727579136000 >

0'_1 __ 7651 r2+ 2856512037384017 1”4—|— 230321514983502022819543333 7'6
- 356864 231674782293688320 300804815004191395658543923200

4 1602161949914080504985575545918180633039983 r8+ (83)
1383438303094090125683724705721774365474816000 :

Since a3 = s25-#0, so according to formula (45), the SNF is

356864
p 1373 p3 _ _20503743297091 5
R = 356864 R 6435410619269120 R, (84)
; 7651 2
O=1- R-,

356864

up to infinite order. The NT between the original system (with its Jacobian in canonical form) and
the SNF (84) via the transformation

y1=Rcos®, y,=—Rsin0, (85)

has also been obtained by combining the two NTs: one between the original system (given in the
transformed state equation) and system (83), and the other between systems (83) and (84). It has
been noticed that computing the combination of the two NTs is very time consuming. In fact, it
took about 65 min to obtain the NT from a PC machine (PENTINUM III-700MMX 1024 K
system).
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The second procedure is to execute the Maple program developed in this paper, resulting in the
same equation (84) as well as the explicit NT up to ninth order. The computation time is only
about 20 s on the same PC, which is roughly the same as that for computing the CNF (83). This
suggests that the direct method for computing the SNF is indeed computationally efficient. The
explicit 9th order NT is not listed here due to its extremely long length.

Now it is very clear to see the advantage of using the SNF from Egs. (83) and (84). If we use the
CNF (83) to study the bifurcation and stability for the double pendulum system near a Hopf
critical point, one must neglect the seventh and ninth order terms from the first equation of
Eq. (83). However, with the SNF given in Eq. (84), one can easily find the steady state solutions:

(@ R=0 and (b) R = speihi - \/4081987734301361735. (86)

Solution (a) is actually the original equilibrium x; = 0 (or z; = 0) while solution (b) represents the
motion of a limit cycle. It is not difficulty to use the linearization, based on the first equation of
Eq. (84), to prove that the limit cycle is stable. However, the equilibrium R = 0 is a non-linear
center and linearization does not work for determining its stability. However, it is easy to see from
this simple equation that the cubic term dominates the equation for sufficiently small R, implying
that R>0 when R~0. This indicates that R = 0 is unstable. For further detailed bifurcation
analysis, a perturbation parameter is needed, which will not be discussed here.

5.1.2. Generalized Hopf
a3 =ax =0, a157#0
If one chooses the following parameter values:

261 +3,/1689 121 +34/1689 159 —3+/1689

N 70 > S 280 > S 280 ’
y 261 +3+/1689 ~ —8219+303 /1689 1 121+ 34/1689 87)
4 140 T 1680 =y = 70
then the Jacobian of the system becomes
[0 1 0 0 i
-1 0 0 0
J=1 00 _i 0 . (88)
1
00 0 363 + 30\/ 689

Similarly, executing the Maple program results in the following SNF:

D |24496973786396176127 _ _197651938936617393 . / 5
R= [3281762526753]776000 10939208422510592000 1689:| R

+ 30441735470693013195988592741671391906437234184367523771636618225278953487959485881149
218930107876357728158484832601674620946173321985303417930416720131431103201280000000

_ 246906418431165910095535146181973218474249708411458985480599287510872342199363681651 , /1689 R9
72976702625452576052828277533891540315391107328434472643472240043810367733760000000 ’

) — 1 _ |16667499335273736857 _ _138322651547879863 . / 4
0 =1 [65635250535063552000 21878416845021184000 1689} R ’ (89)
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which falls in category GH-I with k = 2 (see Eq. (55)). Similarly, we can find the solution of the
limit cycle and its stability from the first equation of Eq. (89). It is seen from this example that the
formulas and Maple programs developed in this paper can be applied not only to rational
numbers, but also to irrational numbers. In general, the programs can be applied to any numerical
numbers and/or symbolic notations.

5.1.3. Generalized Hopf
aiz =0, a;s#0, a»#0
Keep the parameter values the same as that used in Hopf case, except that f5 is now taken as

f5 =% (90)

then the Jacobian has the same eigenvalues as the Hopf case and the Jordan canonical form is
identical to Eq. (82). But the SNF is now given by

}Q __ _ _767702969 }QS + 58368205538268968132154081702099744397609 1{9
- 133344542720 130810825389442099193545382975629611824578560 ’
) — 1 13 p2 5633653476952156762841 4
0 =1 592 R+ 281924229707135538462720 R, (91)

which belongs to category GH-II with k& =j = 2, by comparing Eq. (91) with Eq. (57). Again a
similar bifurcation and stability analysis can be given for this case.

5.1.4. Remarks

It has been noted that the SNFs of Hopf and generalized Hopf bifurcations are indeed unique
regardless the methods used and no matter how different the CNFs may be. Further note that the
SNFs are finite. This is different from other singularities. For example, the SNF for Takens—
Bogodanov singularity (a double zero eigenvalue) does not have a unique “form”. Only if a fixed
“form” is chosen, is the SNF then unique [24]. We use the example of generalized Hopf
bifurcation given above to illustrate this fact. We have used two different methods to find the
CNF for this example up to, say, ninth order, given below:

767702969 .5 30708343271258176627 .7 228432103271351602727140253610433 .9

F'= — 133324522720 " T 10339576123228264857600 ! T 210361106679274835978423352623104000 / >
6 —1_ 13,2 33143783073 |4 318069577212175837247 6
= 392 30803430072320 175772794094830502579200
_ _1903439059823162190766991 7871050181 _ .8 92)
32913665762572076739598363935113216000 | >

which is obtained using the perturbation technique [7]. The other CNF is given by

= — 767702969 VS ___16319870664460070171 V7 __16890535306486975419497455856983 V9
- 133344542720 5169788061614132428800 13147569167454680373651459538944000

9 =1- J}_rZ + 324072151913 V4 __222751322503702316267 r6
- 592 40803430072320 175772794094880502579200

___26446400859086797664305243422889 r8 (93)
31346724443076754375163158462464000 ° >

obtained using the CNF theory (e.g., Takens normal form theory). It is observed from Egs. (92)
and (93) that except for the two leading terms — D P and —5.1732 12, all the other coefficients
are different. However, when we use the same formulas given in Ref. [22] to compute the

coefficients of the SNF from the two different CNFs, we obtain the same SNF, given by Eq. (91).
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5.2. Hopf-zero singularity

In order to obtain a critical point at which the system has a simple zero and a pair of purely
imaginary eigenvalues, it is required that a4 = 0 and a;a; = a3. Choosing the parameter values

ﬁ:3> f2:%5 fé:%’ f;t:%a f5:1> 7/’]:’/’2:19 (94)
yields the eigenvalues
=41, A3=0 and 4= —%. (95)

Similar to Hopf bifurcation, introduce the linear transformation

Z1 1 0 | 1 X1
Vo) 0 1 0 —% X2
= 1 1 5 ’ (96)
23 I = = 3|
Z4 % 1 0 %5 X4
into Eq. (73) to obtain the Jordan canonical form
0 1.0 0
-1 0 0 O
Jo = 97)
0 00 0
_71
00 0 —5
The CNF for this case can be found using the perturbation method [28]:
P = r[817 2 1047 .2 5836100159 4 _ 3303078383571 ,2 .2 _ 9709115 24]
27136 6784 146352046080 15537708892160 140944384
0= 14 1S77,2 195 2 98827513073 4 | 1872907276221 ,2 2 | 4784053931 4
= 13568 33927 T 2341632737280 7768854446080 4510220288
. _ 207,2 _ 1012 | 43162232923 4 | 208685241 . 138661
z=z[—§kr — T+ srsissn ! tissore” 2+ 3512320 ~ ] (98)

It is seen from the above equations that since ajg; = d201 = d320 = a3z = 0 so we cannot apply the
results and Maple program developed in this paper for Hopf-zero singularity to find the SNF of
the above system. In fact, if we apply the Maple program to this example, we would obtain the
normal form up to fourth order which is in the “form” of the CNF, but with different coefficients.
Executing the program to higher order terms results in the CNF with undetermined A and B
coefficients.

We use another known example to demonstrate the computation of the SNF for Hopf-zero
singularity. This example is a simple 3-D system described by

X=X — (X1 —x3)h xa=x, X3 = —(x —x3)% 99)

which was considered by Chow et al. [6] for computing the CNF. They used Takens normal form
theory to find the normal form up to fourth order terms. We applied the perturbation approach
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[28] to obtain the CNF up to, say, 10th order, given in cylindrical co-ordinates as follows:

P rz[l _ %rz 62 45257 ,4 %rz 22 4 8D 4 4 8380395263 6 647040649 4 2

15367 — 298598400 746496
14452 4 6 | 2833569591307051 .8 _ 422554075263397 .6 .2
5017 20— 2915 2° + Sieteasooos 33592320000 | %
15852923765 .4 4 | 1301908 .2 .6 8
+ WV z + 9 r-z +2166822 ],

9 =14+ %},2 ) 22 + % 7'4 4 % 7'2 22 —19 Z4 + 990925539288109 rﬁ + lig%gg?ﬂ 7'4 22
- P A 401+ B~ SR 4 2 IS
_ % V2 26 — 21608 28 4 581682075893293817253225090308081 10 _ l33462799998312679768080007010 511 V8 Z2
_ 74477106569376512630800000247 ;,6 Z4 4 697;1(1)(5)9823453 }"4 Z6 4 239?471‘61423 V2 Z8 12075676 ZlO,

N ) 2 313 4 2.2 4 1325465 .6 | 43663 .4 2 2 4 6
I= =51 =" =gl +2rz+4z—165888r +Wrz—40rz—1002

7357559261 .8 | 62758273 .6 2 57671 .4 _4 2.6 8
AR L A A . Al + 2804 7 z° + 5280 z

__17291316228697 }"10 4 4808794663208693 V8 22 __35063334614201 7‘6 Z4
35831808000 134369280000 859963392

— 88740547 44 26 _ 325064 17 2° — 453440 '°. (100)

Note that Eq. (100) does not involve odd order terms because of the special form of Eq. (99). It is
seen from Eq. (100) that a9 = a3, = 1, which violates the second condition of Eq. (63),
indicating that this case is not generic. However the Maple program has been developed to allow
for such non-genericness. Executing the Maple program developed in this paper yields the SNF up
to 10th order:

R=RZ,

S 119 p2 | 865 74 | 185253037 6 _ 143758879489111 8 | 68158920358549065431 10
O=1-ZR +15Z2"+ 550 £ 7304850000 2 T 65340047200000 £ >

7 _ 1 p2 _ 72 343 p4 | 14020496369 p8

=R =77 =56 R" + 5550800 K- (101)

It is seen from Eq. (101) that the third equation is even simpler than the generic case since the
terms R®, R'", etc. do not appear in the Z equation. This is due to the condition ajo; = a3p> = 1.
The SNF given by Eq. (101) is indeed much simpler than the CNF described by Eq. (100).

It is observed from Egs. (100) and (101) that using the SNF to give a bifurcation analysis is
much simpler than using the CNF. In fact, it is not easy to find the steady state solutions (by
setting 7 = z = 0) from the CNF since the two polynomials are coupled through r and z. However,
it is straightforward to find the steady state solutions and their stabilities from the first and the
third equations of the SNF given in Eq. (101). Setting R = Z = 0 yields

() R=Z=0 and (i) R=0.355778, Z=0. (102)

Solution (i) is the initial equilibrium solution while solution (ii) represents a limit cycle. To find the
stability of the limit cycle, one can apply linearization to the two equations R and Z to find the
two eigenvalues evaluated on the solution of the limit cycle: 4, = +0.780203, indicating that the
limit cycle is unstable. Two perturbation parameters (unfolding) are needed for further
bifurcation and stability analyses.
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6. Conclusions

A previously developed perturbation technique for calculating CNF has been extended to
compute the SNF of dynamical systems associated with a purely imaginary pair, and a simple zero
and a pair of purely imaginary eigenvalues. It has been shown that the perturbation method has
computational advantages over the standard method of normal forms. The technique combines
the normal form theory with center manifold theory in one unified procedure to determine a
unique CNF. The comparison between the indirect and direct computations of the SNF shows
that the direct computation is much more efficient. It has also shown the advantage of using the
SNF that greatly simplifies the bifurcation and stability analyses. Moreover, other advantages can
be observed: (1) the technique is straightforward and systematic, and can be easily implemented
using a computer algebra system such as Maple; (2) the approach can be straightforwardly
extended to consider the SNF of systems associated with other singularities. (3) the method can be
directly extended to study non-autonomous systems involving forcing functions and/or
parametric excitations; and (4) the technique can be generalized to investigate systems which
may involve perturbing (&) terms, or which may involve non-linear terms not necessary given in
homogeneous polynomials. However, this perturbation approach is only applicable to the cases in
which the Jacobian of the system evaluated at a critical point involves, at least, a pair of purely
imaginary eigenvalues.
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Appendix A. Input files

The complete input files for the system can be found at the website: http://www.pyul.apmath-
s.uwo.ca/ pyu/pub/software.

sysin = 1:

if sysin = 1 then
M1 = 2:
M2 = 0:
N = 2+M1+M242:
Order = 8:

func .= table([(1)=x[2]+...,(2)==x[1]1+...,(3)=-1/44x[3]+...,(4)=-
9xx[4]1+...1);
elif sysin = 2 then
M1 = 2:
M2 = 0:
N = 2+M1+M242:


http://www.pyu1.apmaths.uwo.ca/~pyu/pub/software
http://www.pyu1.apmaths.uwo.ca/~pyu/pub/software
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Order = 8:
func = table([(1)=x[2]+...,(2)===x[1]+...,(3)=-1/4,x[3]+...,
(4)=-363/704x[41-9/70 xx [4] 4~ 16891/D+-D;

elif sysin = 3 then

M1 = 2:

M2 = 0:

N = 2+M1+M242:
Order = 8:

func = table([(1)=x[2]+...,(2)=-x[1]+...,(3)=-1/44xx[3]+...,(4)=-
elif sysin = 4 then

M1 .= 1:

M2 = 0:

N = 3+M1+M242:
Order:=8:

func = table([(1)=x[2]+...,(2)=-x[1]+...,(3)=0+...,(4)=-7/2*x[4]+...]1);
elif sysin = 5 then

M1 = 0:

M2 = 0:

N = 3+M1+M242:
Order:=10:

func[1] = -x[2]-(x[1]-x[3])~2:

func[2] = x[1]:

func[3] = -(x[1]-x[3])-2:

for i from 1 to 3 do
func[i] = subs(x[1]=X1, func[i]):
func[i] = subs(x[2]=x[1],func[i]):
func[i] = subs(X1=x[2],func[i]):

od:

temp = func[1]:

func[1] = func[2];

func[2] = temp;

func[3] := func[3];

fi:

In this appendix, the input files for the examples presented in Section 5 are given. A user can
follow the samples to prepare one’s own input files. Due to the large size of the input files, we only
list the linear parts for the pendulum system.
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